Product News

21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585 Japan TEL: +81-75-311-2121 FAX: +81-75-315-0172 www.rohm.com

High input voltage LED source driver

BD8372HFP-M/BD8372EFJ-M

Description

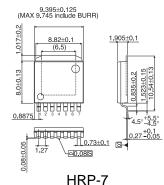
BD8372HFP-M/EFJ-M is a LED source driver with the capability of withstanding high input voltage (50V Max.).

The fixed current output can change in the H/L current,

and it is the best for automotive LED drive. It is built into LED open/short protection, external resistance open/short protection and overvoltage overheating protection, and high reliability can be achieved.

When driving two or more LED by using two or more IC, it can be done to control LED all together turning off even if LED causes short/open in a certain row.

Features


- 1) Input voltage range 5.5 to 40V
- Changeable type fixed current source driver(200mA Max.), Current accuracy±3 % (VIN=13V, Ta=25°C)
- 3) H/L Current setting switch control
- 4) Built-in LED open/short protection circuit
- 5) Built-in ISET open/short protection circuit
- 6) Built-in overvoltage overheating protection and temperature protection circuit
- 7) Error state output detection function(PBUS)
- 8) HRP7/HTSOP-J8 package

Applications

For automotive (Rear lamp, Interior light, etc.)

• Absolute Maximum Ratings (Ta=25°C)

•Package (Unit:mm)

(MAX 5.25 include BURR)

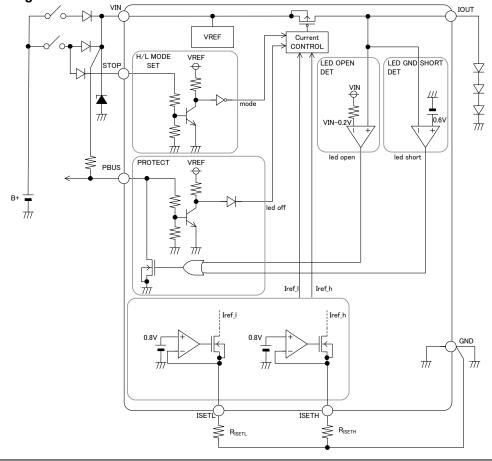
HTSOP-J8

Parameter	Symbol	Rating	Unit
Power supply voltage	V _{VIN}	50	V
STOP, IOUT, PBUS terminal	V _{STOP} , V _{IOUT} , V _{PBUS}	50	V
ISETH, ISETL terminal	V _{ISETH} , V _{ISETL}	7	V
Power Consumption	Pd	2.3(HRP7)*1	W
	Pu	1.1(HTSOP-J8)*2	
Operating temperature range	Topr	-40 to 125	°C
Storage temperature range	Tstg	-55 to 150	°C
Joint part temperature	Tjmax	150	°C
IOUT output maximum current	I _{IOUT}	200	mA

^{*1)} HRP7: IC mounted on glass epoxy 2 layer board, area 15mm × 15mm of the back copper foil, measuring 70mm × 70mm × 1.6mm less than copper foil share 3%, power dissipated at a rate of 18.4mw/°C at temperatures above 25°C.

Operating Conditions (Ta=-40 to +125°C)

[Please set after considering power consumption for the power-supply voltage.]


[Flease set after considering power consumption for the power-supply voltage.]						
Parameter	Symbol	Min.	Тур.	Max.	Unit	
Power supply voltage	VIN	5.5	13	40	V	ē
Current setting resistance	R _{ISETH}	10k	-	100k	Ω	STOP=H
	R _{ISETL}	10k	-	100k	Ω	STOP=L

^{*2)} HTSOP-J8 : IC mounted on glass epoxy 2 layer board, area 15mm × 15mm of the back copper foil, measuring 70mm × 70mm × 1.6mm less than copper foil share 3%, power dissipated at a rate of 8.8mw/°C at temperatures above 25°C.

•Electrical Characteristics (Unless otherwise specified, Ta=-40 to 125°C, VIN=13V, R_{ISETL}=R_{ISETH}=40kΩ, PBUS=10kΩ)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Circuit current	IVIN	-	2.9	5	mΑ	
IOUT output current different width H	IOUT_H	48.5	50	51.5	mA	50mA setting (ISET=40kΩ) STOP=High, Ta=25°C
		46	50	54	mA	50mA setting (ISET=40kΩ) STOP=High, Ta=-40 to 125°C
IOUT output current different width L	IOUT_L	4.85	5	5.15	mA	5mA setting (ISET=40kΩ) STOP=Low, Ta=25°C
		4.6	5	5.4	mA	5mA setting (ISET=40kΩ) STOP=Low, Ta=-40 to 125°C
IOUT drop voltage H	VDRH_IOUT	-	0.7	1.2	V	200mA setting(ISET=10k Ω) STOP=High
IOUT drop voltage L	VDRL_IOUT	-	0.5	0.7	V	20mA setting(ISET=10kΩ) STOP=Low
IOUT OFF current	IIOUT_OFF	-	-	1	μА	VIOUT=2V, PBUS=L, Ta=25°C
IOUT current at GND short	IIOUT_SHORT	-	-	40	μА	VIOUT=0V
ISET terminal voltage	VISET	-	0.8	-	V	ISETH, ISETL
ISET short detection resistance	RISET_SHORT	-	5.1k	7.5k	Ω	ISETH, ISETL
ISET open detection resistance	RISET_OPEN	125k	400k	-	Ω	ISETH, ISETL
IOUT LED OPEN detection	VIOUT_OPEN	VIN-0.3	VIN-0.2	VIN-0.1	V	
IOUT LED short detection	VIOUT_SHORT	0.2	0.6	1.0	V	
STOP input voltage H	VIH_STOP	4.0	-	VIN+0.2	V	
STOP input voltage L	VIL_STOP	GND	-	1.0	V	
STOP input current	VIN_STOP	-	40	100	μΑ	STOP=13V
PBUS input voltage H	VIH_PBUS	4.0	-	VIN+0.2	V	
PBUS input voltage L	VIL_PBUS	GND	-	2.0	V	
PBUS Low voltage	VOL_PBUS	-	-	1.5	V	IPBUS=20mA
PBUS input current	IIN_PBUS	-	38	100	μΑ	PBUS=13V
VIN Reduce voltage open mask	VUVLO_IOPEN	7.5	8.0	8.5	V	
VIN Over voltage mute current	VIN_OVPMUTE	16	19	24	V	200mA setting (ISET=10kΩ) STOP=High

•Block Diagram

11039EAW39

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of ad examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

The content specified in this document is correct as of 1.26. 2011

The content specified in this document is correct as of 1 26, 2011.

21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585 Japan TEL : +81-75-311-2121 FAX : +81-75-315-0172 www.rohm.com

